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LMNA mutations
Mutations in the gene encoding A-type 
lamins (LMNA) cause a broad spectrum 
of human diseases, collectively referred 
to as laminopathies. Dominant LMNA 
mutations most commonly cause cardio-
myopathy with irregular heart rhythms, 
but LMNA mutations also cause skeletal 
myopathies, lipodystrophies, and prema-
ture aging syndromes (1–4). The LMNA 
gene is expressed in virtually all differen-
tiated somatic cells and encodes two pre-
dominant alternatively spliced isoforms, 
lamins A and C (lamin A/C) (5). Lamin 
A/C are intermediate filament proteins 
that, along with B-type lamins, are major 
constituents of the inner nuclear envelope 
and form the nuclear lamina (6). In addi-
tion to providing a structural scaffolding 
for the nucleus, the nuclear lamina partic-
ipates in mechanotransduction, chroma-
tin organization, regulation of gene tran-
scription, and DNA repair/replication (6). 
Despite the near-ubiquitous expression 

of LMNA, laminopathies predominantly 
affect mechanically active tissues such 
heart and skeletal muscle (7).

LMNA mutations are responsible for 
5% to 8% of genetic dilated cardiomyop-
athy (DCM) (8). The average age of dis-
ease onset in LMNA mutation carriers is 
variable, and symptoms generally occur 
in the third decade of life. Strikingly, it 
has been reported that the penetrance of 
LMNA mutations approaches 100% by 60 
years of age, and affected individuals often 
require cardiac transplantation because of 
end-stage heart failure (9). Compared with 
other cardiomyopathy genes, LMNA muta-
tions are associated with a high incidence 
of sudden cardiac death due to conduction 
defects and atrial/ventricular arrhyth-
mias, manifestations that often precede 
the development of overt DCM (9).

Many LMNA missense mutations are 
thought to act through a dominant-neg-
ative mechanism. There are two pre-
vailing theories on the molecular basis 

of LMNA-related DCM (6). A structural 
hypothesis proposes that the physical 
integrity of cardiac nuclei is compro-
mised, leading to increased cell death 
and a progressive decline in myocardial 
contractile performance. The gene regu-
lation hypothesis suggests that chromatin 
organization and interactions among tis-
sue-specific transcription/epigenetic fac-
tors are perturbed, resulting in aberrant 
gene expression and activation of patho-
logical signaling pathways. There is also 
compelling evidence implicating disrupt-
ed cardiomyocyte nuclear mechanics and 
mechanotransduction in LMNA-related 
DCM (10, 11). These pathogenic modes 
are likely not mutually exclusive, but rath-
er, they might cooperate through a com-
plex interaction, ultimately culminating 
in a final clinical phenotype.

Cardiac defects originate during 
development
In this issue of the JCI, Guénantin and Jebe-
niani et al. use the Lmna mouse model engi-
neered with the missense H222P mutation 
to link lamin A/C with early developmental 
cardiomyopathy (12). The H222P muta-
tion was originally described in a small, 
three-generation family with autosomal 
dominant Emery Dreifuss muscular dys-
trophy; two of the affected three family 
members had arrhythmias (13). As one of 
the first knockin models for laminopathy, 
mice were generated to carry this variant, 
which is positioned within the rod domain 
and a linker region (14). LmnaH222P/H222P 
mice develop locomotion defects and ven-
tricular dilation, resulting in early mortality 
between 9 and 13 months (14).

Guénantin, Jebeniani, and colleagues  
now report that cardiac defects in 
LmnaH222P/H222P originate during devel-
opment, as early as embryonic day 13.5, 
and associate with a distinct transcrip-
tional and morphological profile (12).  
LmnaH222P/H222P embryos display higher 
rates of lethality compared with normal or 
heterozygous controls. To more carefully 
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misexpressed genes involved in the epithelial-mesenchymal transition and 
showed decreased methylation at the fourth lysine of histone H3 (H3K4). 
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gin for lamin A/C-related cardiomyopathy. 
Although present from conception, cardio-
myopathic genetic mutations manifest later 
in life with an age-dependent onset (9). The 
findings from Guénantin, Jebeniani, and 
colleagues suggest some of these mutations 
may have early, even developmental, com-
ponents (12). Inherited cardiomyopathic 
LMNA mutations manifest with conduc-
tion system disease often as the first finding 
but only after being present for decades. 
Ascertaining whether some of these same 
pathways for EMT are disrupted in mature 
human myocardium and conduction sys-
tems will be a critical next step. Whether oth-
er LMNA mutations, missense or truncating, 
act through these same pathways is also not 
known. Carriers of truncating LMNA muta-
tions are at increased risk for more severe 
arrhythmia phenotypes; therefore, EMT or 
MESP1 and/or its targets may be especially 
relevant for the conduction system.

Conclusions and clinical 
implications
The chromatin changes observed may also 
indicate the presence of a generally import-
ant pathway outside of LMNA. The LSD1 
inhibitor improved contractility of normal 
embryoid bodies compared with untreated 
embryoid bodies. Enhanced contractility 
was also observed in vivo at postnatal days 
one and three, hinting at LMNA-indepen-
dent effects of the compound. LSD1 is ubiq-
uitously expressed and, therefore, targeting 
LSD1 should alter more than cardiomyo-
cyte function. Human patients with H222P, 
just like the mouse model, have accompa-
nying musculoskeletal defects that include 
tendon contractures and impaired mus-
cle growth (13, 14). LSD1 inhibition may 
have efficacy in promoting skeletal muscle 
development and maturation (16, 17), and 
these known roles could influence its use.

Further studies are needed to ascertain 
whether the LSD1 inhibitor affects the adult 
heart and especially the cardiac electrical 
system, as it does embryonic hearts, and this 
could be especially relevant to disease given 
the onset and findings in human laminop-
athy. Notably, when the pregnant female 
mice were treated with the GSK-LSD1 inhib-
itor, myocardial contraction in the pregnant 
dams may have improved, which itself could 
have bearing on pregnancy outcomes. This 
observation raises the possibility that, in 
addition to targeting histones in the nucle-

(15). The Mesp1 gene promoter was heavily 
methylated in LmnaH222P/+ ESC lines com-
pared with WT controls (Figure 1). Down-
regulation of the Lsd1 gene was sufficient to 
rescue the defective epigenetic landscape in 
mesodermal cells, improving cardiac con-
tractility. Finally, a small molecule inhibitor 
of LSD1 activity also rescued the lethality of 
LmnaH222P/H222P embryos, suggesting epig-
enomic modification of genes critical to 
EMT is important in laminopathy (12).

The observations made in Lmna-H222P 
heterozygous ESCs imply a congenital ori-

study cardiomyocyte differentiation and 
specification, the authors studied hetero-
zygous LmnaH222P/+ mouse embryonic stem 
cell (ESC) lines. The authors identified 
lysine-specific demethylase 1 (LSD1, also 
known as lysine (K)-specific demethylase 
1A, KDM1A) as a central regulator of car-
diac development through its influence 
on the mesoderm posterior 1 (Mesp1) gene 
(12). Mesp1 encodes mesoderm posterior 1, 
a basic helix-loop-helix transcription fac-
tor that regulates epithelial-mesenchymal 
transition (EMT) and cell specification 

Figure 1. The H222P Lmna mutation inhibits proper EMT in developing cardiomyocytes. (A) In the 
normal developing heart, MESP1 is required for normal EMT. (B) In LmnaH222P/+ ESC-derived cardiomy-
ocytes, activity of histone demethylase LSD1 results in decreased MESP1, resulting in reduced EMT. 
(C) Inhibition of LSD1 via a small molecule GSK1-LSD restores cardiac function in LmnaH222P/H222P mice. 
Restoration of proper chromatin accessibility represents an attractive therapeutic target to prevent 
cardiomyopathy in laminopathies. TF, transcription factor; RNAPol, RNA polymerase.
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us, LSD1 targets the contractile apparatus 
in cardiomyocytes, as LSD1 is known to 
also demethylate non-histone proteins (18). 
Contractile effects would have obvious ther-
apeutic implications for heart failure and 
perhaps irrespective of etiology.

LSD1 also demonstrates notable pro-
miscuity in downstream targets involved 
in cellular response to neuroendocrine and 
metabolic signals, both of which play a role 
in the coordination of cardiac development 
(15, 19). Furthermore, recent studies sug-
gest LMNA regulates chromatin status via 
polycomb protein (20), supporting a direct 
downstream alternative pathway to explain 
the change in chromatin state. Nevertheless, 
the inhibition of the LSD1 pathway demon-
strates improved cardiac outcomes in the 
homozygous mouse model, suggesting a 
new therapeutic target for laminopathies.
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