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Supplemental Figure 1. Characterization of MLLL3 and MLL4 double knockout mESCs. (A)
RNA-seq track showing the CRISPR strategy to knock out MLL3 and MLL4 by targeting exons
8-9 and exons 16-22, respectively. (B) Western blot showing the successful knockout of MLL3
and MLL4 with B-tubulin and the pan-COMPASS subunit RBBPS as internal controls. Other
subunits specific to MLL3/4 COMPASS including NCOA6, UTX, and PTIP are also shown with
decreased signals in MLL3/4 KO cells. N, N-terminus; M, middle region; C, C-terminus. (C)
H3K4mel and H3K27Ac ChIP-seq was performed in WT and MLL3/4 KO cells. K-means
clustering (k=2) separated the previously defined MLL4 peaks (/) into two groups based on the
log2 fold change in H3K4mel and H3K27Ac ChIP-seq signals. In the meta-analysis shown,
H3K4mel and H3K27Ac reduction coincides with strongly reduced expression of genes at Group2
MLL4 peaks in MLL3/4 KO cells. (D-E) Feature distribution of Group1 and Group2 MLL4 peaks
(D) and the KEGG pathway enrichment analysis of Groupl and Group2 genes (E) using the
ChIPseeker package(2). (F) RNA-seq track showing the Pou5f1 and Nanog gene expression in
WT and MLL3/4 KO cells. (G) Cell growth rates of WT and MLL3/4 KO cells after sustained
passaging. Cells were seeded in 6-well plates at 1x105 cells/mL. Cell number was counted with

Beckman Vi-Cell XR Cell Viability Analyzer. Cell numbers were normalized to day 1. n=2.
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Supplemental Figure 2. Genome-wide Screen Identifies Purine and Pyrimidine Synthesis
Pathways as Essential in MLL3/4 KO mESCs. (A) Sample clustering of replicates for different
conditions and time points. (B) Overall 10g2FC rank plot with purine/pyrimidine genes
highlighted. (C) Distribution of sgRNA read counts (normalized) of purine/pyrimidine synthesis
genes in WT and KO cells at different time points. (D) WT and KO cells were labeled with GFP
and mCherry and were mixed at a 1:1 ratio. Mixed cells were infected with sgRNAs, and
fluorescence was analyzed with flow cytometry. (E) The validation of several negatively selected
genes in MLL3/4 KO. Normalized ratio of mCherry/GFP indicating selective sgRNA impact on

KO cells.
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Supplemental Figure 3. Global Steady State Metabolomics of WT and MLL3/4 KO mESCs.
(A) Dendrogram of steady state metabolomics for WT and KO cells. (B) PC analysis of WT and
KO cells steady state metabolomics. (C) Hierarchical clustering heatmap showing the
differentially abundant metabolites in WT and KO cells. The scale bar represents the Z-score. (D)
Volcano plot showing the significantly altered metabolites by log10 p value and log2 fold change.

(E) Important metabolic features in WT and KO cells ranked by VIP scores.
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Supplemental Figure 4. MLL3/4 KO mESCs are more sensitive to purine synthesis
inhibition. (A-B) WT and MLL3/4 KO cells were treated with 0 — 2.5 uM lometrexol (LTX) (A)
or 0 — 5 uM methotrexate (MTX) (B) for 48 hours. A CellTiter-Glo® luminescent cell viability
assay was performed to determine the percentage of cell growth inhibition under these conditions
with three different MLL3/4 KO clones included. (C) WT and MLL3/4 KO cells were treated with
0 — 40 uM SHIIN1 for 48 hours. An MTT cell viability assay was performed to determine the
percentage of cell growth inhibition under these conditions with three different MLL3/4 KO clones
included. n=3. (D) Venn diagram showing the overlap of genes upregulated upon LTX treatment
in WT or KO cells. (E) Pathway enrichment analysis of the genes upregulated upon LTX treatment
in both WT and KO cells. (F) Pathway enrichment analysis of the genes uniquely upregulated
upon LTX treatment in WT cells. (G) Pathway enrichment analysis of the genes uniquely

upregulated upon LTX treatment in MLL3/4 KO cells.
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Supplemental Figure 5. Loss of the MLL3/4 SET domain does not confer increased
sensitivity to purine synthesis inhibition. (A) Western blot showing MLL4, MLL3, NCOA®6,
UTX, RbBP5 and ASH2L protein levels in WT, MLL3/4 ASET and MLL3/4 KO cells with Hsp90
as the loading control. Bulk levels of histone H3K4mel, H3K4me2, H3K4me3 and H3K27Ac are
also shown. N, N-terminus; C, C-terminus. mESCs harboring deletion of the SET domains of both
MLL3 and MLLA4 (referred to as MLL3/4 ASET) were generated in our previous studies (3). (B)
Western blot showing nuclear and cytoplasmic MLL4, UTX, NCOA6 and RBBPS5 protein levels
after cell fractionation, with MLL1 and Hsp90 serving as nuclear and cytoplasmic loading controls,
respectively. (C) WT, MLL3/4 ASET and MLL3/4 KO cells were treated with 0 — 2.5 uM
lometrexol (LTX) for 72 hours. A CellTiter-Glo® luminescent cell viability assay was performed

to determine the percentage of inhibition. n=2.
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Supplemental Figure 6. TMT proteomics profiling identified purine metabolism
upregulation in MLL3/4 KO cells. (A) TMT proteomics profiling was conducted in WT and
MLL3/4 KO cells. PCA plot showing the separation of genotypes by PC1 using all 7096 proteins
identified. (B) Volcano plot showing all the differentially abundant proteins in WT and KO cells
with the cutoff [FC| > 1.75, p.val <0.01. Up, 343 proteins; Down, 384 proteins. (C) Protein levels
of MLL3/4 COMPASS subunits identified and quantified by the TMT approach. (D) Pathway
enrichment analysis of the downregulated proteins in KO cells in comparison to WT cells. (E)
Pathway enrichment analysis of the upregulated proteins in KO cells in comparison to WT cells.
The mitochondrial respiratory chain complex I group (referred to as Group1 here) was significantly
enriched. (F) Heatmap showing the 59 proteins in Groupl change in WT and KO cells related to

nucleotide metabolic processes.
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Supplemental Figure 7. RNA-seq and TMT proteomics profiling integration identified top
MLL3/4 target genes. (A) The correlation analysis of TMT and EdgeR data identified factors
including NCOA®6 that were altered at the protein but not RNA levels. (B-E) Browser tracks with
overlaid view of H3K4mel, H3K27Ac and H3K27me3 ChIP-seq for selected downregulated
target genes including Glipr2 (B), Susd2 (C), Ddc (D), and Alp! (E). (F) Knockdown efficiency of
each specific target shown by the z-score heatmap. (G) Percentage of genes regulated in common

with MLL3/4 for each target knockdown.
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Supplemental Figure 8. MLL1 compensates the loss of MLL3/4 to activate gene expression.
(A) H3K4me3 ChIP-seq peaks in both WT and MLL3/4 KO cells were merged and sorted.
Average plot showing the H3K4me3 signal in WT and MLL3/4 KO cells centered on all H3K4me3
peaks. n =22604. (B) MLL2C (MLL2 Carboxyl-terminal antibody) ChIP-seq peaks in both WT
and MLL3/4 KO cells were merged and sorted. Average plot showing the MLL2C signal in WT
and MLL3/4 KO cells centered on all MLL2 peaks. n = 15143. (C) SET1A ChIP-seq peaks in both
WT and MLL3/4 KO cells were merged and sorted. Average plot showing the SET1A signal in
WT and MLL3/4 KO cells centered on all SET1A peaks. n = 13887. (D-F) Cell viability of WT
and MLL3/4 KO cells in response to OIR-9429 (D), MI-463 (E) or MI-503 (F) treatment. N=3 for
each specific concentration in WT and MLL3/4 KO. (G) ChIP-seq track showing the chromatin
occupancy of H3K4me3, MLL1, MLL2, Menin and SET1A at the Ngo! gene locus in WT and
MLL3/4 KO cells. (H) gRT-PCR showing Ngol (H) and Ak3 (I) gene expression in WT and
MLL3/4 KO cells treated with 0, 50, or 100 pM WDR5-0103. mRNA levels were normalized to
the Gapdh internal control. Data are presented as mean + standard deviation (SD) with n=3. *P <

0.05, **P < 0.01 with unpaired t-test.
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Supplementary Figure 9. Hi-C analysis in WT and MLL3/4 KO mESCs. (A) Loop number,
TAD (Topologically Associated Domains) number, and A/B compartment occupancy numbers in
WT and MLL3/4 KO mESCs. (B) Hi-C was performed in WT and MLL3/4 KO mESCs.
Compartmentalization saddle plots of Hi-C data for WT and MLL3/4 KO ES cells, created using
cooltools (4). Average intra-chromosomal interaction frequencies were normalized by expected
interaction frequency and distance. Bins were sorted by eigenvector PC1 values. B-B interactions
are located in the upper-left corner of saddle plots and A-A interactions are located in the lower-
right corner. (C) Saddle plot of Log2FC of MLL3/4 KO versus WT. (D) A C-score was calculated
for each 100-kb genomic bin to determine its A or B compartmentalization. Compartment
switching, decompaction and compaction upon MLL3/4 loss are represented in the scatter plot.
Lengths of genomic regions (no. of bins x 100 kb) and percentage of compartment shifts are shown.
(E) Genes located in B-to-A shifted (B-A), stable and A-to-B shifted (A-B) bins were selected (>=
Y gene length located within the bins). 1301 and 229 genes were found in B-A and A-B group,
respectively. Genes with detectable expression levels were further selected (361 for B-A and 91
for A-B) for analysis of the logFC gene expression in KO versus WT, shown in the box plot. (F-
G) Eigenvector values for the top 100 up (F) or down (G) regulated genes. “3 bins average” is the
average of the 100 kb bin containing the gene’s TSS and the two adjacent bins; “5 bins average”

is the average of the 100 kb bin containing the gene’s TSS and the adjacent four bins.
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Supplemental Figure 10. Loss-of-function MLL4 mutations in colorectal cancer share
similar gene expression features with mESC depleted of MLL3/4. (A) PCA of 71 colorectal
cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE) based on RNA-seq gene-expression
data obtained from DepMap. Cell lines were grouped based on the MLL4 mutation status: WT, n=
43; Truncation, n = 19; Missense only, n = 9. If truncation mutation and missense mutation co-
exist in one cell line, it is annotated as truncation. PC1, 24% variance; PC2, 11% variance. (B)
Pathway analysis of genes downregulated in MLL4 truncation versus WT CCLE colorectal cancer
cell lines. (C) Pathway analysis of genes upregulated in MLL4 truncation versus WT CCLE
colorectal cancer cell lines. (D) Pathway analysis of genes downregulated in MLL4 truncation
versus WT patient samples from the TCGA PanCancer Atlas. (E) Pathway analysis of genes
upregulated in MLL4 truncation versus WT patient samples from the TCGA PanCancer Atlas. (F)
Pathway analysis of genes downregulated in the MLL4 truncation versus WT condition in both
CCLE colorectal cancer cell lines and patient samples from the TCGA PanCancer Atlas. Data were
retrieved from cBioPortal with OQL (Onco Query language) to define MLL4 mutation status

(https://www.cbioportal.org/).
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Supplemental Figure 11. MLL4 mutant colorectal cancer cells are selectively sensitive to
lometrexol treatment. (A) MLL3/4 and UTX mutation status of the colorectal cell lines. (B-C)
Cell growth inhibition upon LTX treatment (0 — 30 uM) in MLL4 wild type (B) and MLL4 mutant
(C) cell lines. (D-E) Cell growth inhibition upon treatment with Piericidin A (0 — 10 uM) (D) or
Phenformin (0 — 30 mM) (E) in MLL4 wild type and MLL4 mutant cell lines. CellTiter-Glo®
luminescent cell viability assays were performed 72 hours after treatment to determine the
percentage of inhibition under each treatment condition. Data are presented as mean + standard

deviation (SD) with n=3. *P < 0.05, **P < 0.01, ***P < 0.001 with unpaired t-test.
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Supplemental Figure 12. Cells with compromised MLL4 function are selectively sensitive to
de novo purine synthesis inhibition. (A) Tracer levels of glutamine (M+1) in SW1417, Caco2,
RKO and HCT116 cells. (B) Incorporation of 1N tracer from glutamine into purines in SW1417,
Caco2, RKO and HCT116 cells. MLL4 WT cells, blue; MLL4 mutant cells, red. Data are presented
as mean + standard deviation (SD) with n=3. *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001
with unpaired t-test. (C) A CellTiter-Glo® luminescent cell viability assay was performed in
CAL51 WT, heterozygous MLL4 truncation mutation (hNTD), and MLL4 KO cells treated with
(MTX) (0 — 1 uM). n=3. (D) A CellTiter-Glo® luminescent cell viability assay was performed in
CAL51 WT and MLL4 KO cells were treated with 0, 0.04, or 0.4 uM MTX in the presence of
H20, 50 puM thymidine or 50 uM inosine. n=2. (E-J) Cells were infected with lentiviruses
expressing shCtrl, shGART or shPAICS. Two distinct shRNAs were included for both GART and
PAICS. Western blot showing the knockdown of GART and PAICS in RKO, HCT116, Caco2 and
HTS5S5 cells (E). The growth rates of HCT116 (F), RKO (G), Caco2 (H) and HT55 (I) cells with
shCtrl, s\GART or shPAICS were measured by cell counting (n=2), and the cell number was
normalized to day 0. Colony formation in the four cell lines with GART or PAICS knockdown
was performed by seeding 500 or 1000 cells in 6 well plates and staining after 10-14 days of culture

with media changed every three days (J).
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Supplemental Figure 13. RNA-seq data in colorectal cancer cells treated with LTX. (A)
Morphological change in colorectal cancer cell lines treated with LTX at 1uM for 24 hours viewed
under bright field microscope. (B) summary of total differentially expressed gene numbers (up and
down-regulated genes separated) in these cell lines, with MLL4 mutation status indicated. adj.p <
0.01. (C) Venn diagram showing the overlap of upregulated genes in LTX treated versus control
in RKO, HCT116, and DLDI1. (D) Hierarchical clustering heatmap showing the expression of
genes upregulated in LTX treated versus control in common among RKO, HCT116 and DLDI
cell lines (n = 707). (E) Box plot showing the logFC of the 707 genes upregulated in common
among RKO, HCT116 and DLD1 cells upon LTX treatment. An unpaired t-test was used to
calculate the p value. Gene expression was significantly different compared with MLL4 WT cells

for all the MLL4 mutant cell lines.
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Supplemental Figure 14. The unique gene expression signature of MLL4 mutant cells in
response to LTX treatment. (A-B) RNA-seq track examples showing the AURKA (A) and PLK1
(B) gene expression in MLL 4 mutant (DLD1, HCT116, RKO) or WT (SW1417, Caco2, HT55)
colorectal cancer cell lines in response to LTX treatment. (C) A collection of 217 genes related to
mitotic cell cycle pathways was selected for visualization. Volcano plots highlighting the top 20
downregulated genes involved in mitotic cell cycle pathways in MLL4 mutant cell lines (RKO,
HCT116 and DLDI). The 10 genes found in common among the plots (PLK1, AURKA, CDCA3,
CDC20, SFPQ, POLA1, PSRCI, KIF20A, FAMS83D, and DLGAPS5) were defined as the
“lometrexol responsive mitotic gene signature” (D) Volcano plots showing the expression of these

10 genes in MLL4 WT cell lines (HT55, Caco2 and SW1417).
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Supplemental Figure 15. Lometrexol application in MLL4 mutant tumors in the xenograft
mouse models. (A-D) Tumor development after inoculation of 4 x 10° of HT55 cells into nude
mice. Mice with HT55 subcutaneous (sc) tumors were treated with either vehicle (DMSO, n =9)
or LTX (15 mg/kg, n =9) daily for 7 days. (A) Growth plots for sc tumors in each treatment group
are shown with mean tumor volumes (mm? and upper SD). (B) Dot plot representation of sc tumor
volume in mice at day 18 post-tumor cell injection. Unpaired t-test values for comparisons between
DMSO and LTX treatment: ns, not statistically significant. (C) Photographs of nude mice (left) in
which HT55 cells were inoculated into the right flank and sc tumors taken from these mice (right).
(D) Animal survival at the indicated days after inoculation. Log-rank test was used for comparisons
between DMSO and LTX treatment. (E-H) Tumor development after inoculation of 4 x 10° of
HCT116 cells into nude mice. Mice with HCT116 subcutancous (sc) tumors were treated with
either vehicle (DMSO, n =9) or LTX (15 mg/kg, n = 9) daily for 7 days. (E) Growth plots for sc
tumors in each treatment group are shown with mean tumor volumes (mm3) and upper SD. (F)
Dot plot representation of sc tumor volume in mice at day 12 post-tumor cell injection. Unpaired
t-test values for comparisons between DMSO and LTX treatment: *** P <0.001. (G) Photographs
of nude mice (left) in which HCT116 cells were inoculated into the right flank and sc tumors taken
from these mice (right). (H) Animal survival at the indicated days after inoculation. Log-rank test

was used for comparisons between DMSO and LTX treatment: *** P < (.001.
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Table S1.

Mouse
shRNA
Clone ID Oligo Seq Symb | RefSeq Gene ID Gene
ol ID Description
TRCNO0000 | CCGGGCAGGAACAGAAGTTCGCTATCTCGAGATAGCGAA Alpl NM_00 11647 alkaline
81503 CTTCTGTTCCTGCTTTTTG 7431 phosphatas
e 2, liver
TRCNO0000 | CCGGCCTAGACAACGACAAGTACATCTCGAGATGTACTTG | Sparc | NM_00 20692 secreted
80349 TCGTTGTCTAGGTTTTTG 9242 acidic
cysteine
rich
glycoprotein
TRCNO000O0 | CCGGCTTCGACCAAACCGTTTCTCTCTCGAGAGAGAAACG | Utf1 NM_00 22286 undifferenti
81712 GTTTGGTCGAAGTTTTTG 9482 ated
embryonic
cell
transcription
factor 1
TRCNO00001 | CCGGGCCTTGTTGATCTATCTTGTACTCGAGTACAAGATA Dazl NM_01 13164 deleted in
02500 GATCAACAAGGCTTTTTG 0021 azoospermi
a-like
TRCNO00001 | CCGGGCCTACTACCATCATCGAGAACTCGAGTTCTCGATG | Fabp3 | NM_01 14077 fatty acid
05190 ATGGTAGTAGGCTTTTTG 0174 binding
protein 3,
muscle and
heart
TRCNO00003 | CCGGAGCAAGCACTAAGGATCAAAGCTCGAGCTTTGATCC | Map6 | NM_01 17760 microtubule
40859 TTAGTGCTTGCTTTTTTG 0837 -associated
protein 6
TRCNO00003 | CCGGGATTCGAGAGACAGAGGTCATCTCGAGATGACCTCT | Sdc4 NM_01 20971 syndecan 4
31554 GTCTCTCGAATCTTTTTG 1521
TRCNO0000 | CCGGCGCTTAAATGCCGGAGAAGTTCTCGAGAACTTCTCC | Bhmt NM_01 12116 betaine-
97583 GGCATTTAAGCGTTTTTG 6668 homocystei
ne
methyltransf
erase
TRCNO00001 | CCGGGCCTTTAATATGGACCCTGTTCTCGAGAACAGGGTC | Ddc NM_01 13195 dopa
08475 CATATTAAAGGCTTTTTG 6672 decarboxyla
se
TRCNO000O | CCGGCTTCTGGATATTCATGGACAACTCGAGTTGTCCATG Dnmt | NM_01 54427 DNA
39105 AATATCCAGAAGTTTTTG 3l 9448 (cytosine-5-
)
methyltransf
erase 3-like
TRCNO00001 | CCGGCCTAGAGTACAGGGTGAACATCTCGAGATGTTCACC | Ncoa NM_01 56406 nuclear
73430 CTGTACTCTAGGTTTTTTG 6 9825 receptor
coactivator
6
TRCNO00004 | CCGGGGCGAGCTGAGATTTGGATATCTCGAGATATCCAAA | Khdc3 | NM_02 66991 RIKEN
46257 TCTCAGCTCGCCTTTTTTG 5890 cDNA
2410004A2
0 gene
TRCNO00002 | CCGGGAAGAGAAGTCTTCGTCAATTCTCGAGAATTGACGA | Horm | NM_02 67981 HORMA
00876 AGACTTCTCTTCTTTTTTG ad1 6489 domain
containing 1
TRCNO00001 | CCGGCGCTAATTTGATCCTGTGTTTCTCGAGAAACACAGG Glipr2 | NM_02 384009 GLI
10910 ATCAAATTAGCGTTTTTG 7450 pathogenesi
s-related 2
TRCNO00001 | CCGGCGAGACCCATTGGCAATACTACTCGAGTAGTATTGC | Susd2 | NM_02 71733 sushi
26003 CAATGGGTCTCGTTTTTG 7890 domain
containing 2
TRCNO00001 | CCGGCGGGACGCCTTCGATACTCTTCTCGAGAAGAGTATC | Parvb | NM_13 170736 parvin, beta
12644 GAAGGCGTCCCGTTTTTG 3167
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TRCNO0000 | CCGGGCTGACATACATTGATGACAACTCGAGTTGTCATCA | Mcf2 NM_13 109904 mcf.2

42657 ATGTATGTCAGCTTTTTG 3197 transformin
g sequence

TRCNO00004 | CCGGCACCTTCATGTCTGCATATTTCTCGAGAAATATGCAG | Cth NM_14 107869 cystathiona

20527 ACATGAAGGTGTTTTTTG 5953 se
(cystathioni
ne gamma-
lyase)

TRCNO0000 | CCGGCCAGTGATGCTGTAAGTCATTCTCGAGAATGACTTA | Cd10 | NM_15 235505 CD109

80513 CAGCATCACTGGTTTTTG 9 3098 antigen

Human

shRNA

Clone ID Target Sequence Symb | RefSeq Gene ID Gene

ol ID Description

TRCNO00002 | CCCTAACTGTTGTCATGGCAA GART | NM_00 2618 AIRS,

89428 #1 0819 GARS,
GARTF,
PAIS,
PGFT,
PRGS

TRCNO00002 | GCACAGTCTCATCATGTCAAA GART | NM_00 2618 AIRS,

89431 #2 0819 GARS,
GARTF,
PAIS,
PGFT,
PRGS

TRCNO0000 | CGCAGTGTGAAATGATTCCAA PAIC NM_00 10606 ADE2,

45774 S #1 6452 ADE2H1,
AIRC, PAIS

TRCNO000O0 | GCTGCTCAGATATTTGGGTTA PAIC NM_00 10606 ADE2,

45775 S#2 6452 ADE2H1,
AIRC, PAIS

gRT-PCR

primers

Ak3-QF GCCTGAAGGGATGTGGTATTAG

Ak3-QR CCTGTTAAGGTAGCAGTGAGTT

Nqgo1-QF GAGAAGAGCCCTGATTGTACTG

Ngo1-QR ACCTCCCATCCTCTCTTCTT

Gapdh-QF AACAGCAACTCCCACTCTTC

Gapdh-QR CCTGTTGCTGTAGCCGTATT
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