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Genome-wide hepatitis C virus amino acid
covariance networks can predict response
to antiviral therapy in humans
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Saint Louis University School of Medicine, St. Louis, Missouri, USA.

Hepatitis C virus (HCV) is a common RNA virus that causes hepatitis and liver cancer. Infection is treated
with IFN-o and ribavirin, but this expensive and physically demanding therapy fails in half of patients. The
genomic sequences of independent HCV isolates differ by approximately 10%, but the effects of this variation
on the response to therapy are unknown. To address this question, we analyzed amino acid covariance within
the full viral coding region of pretherapy HCV sequences from 94 participants in the Viral Resistance to Anti-
viral Therapy of Chronic Hepatitis C (Virahep-C) clinical study. Covarying positions were common and linked
together into networks that differed by response to therapy. There were 3-fold more hydrophobic amino acid
pairs in HCV from nonresponding patients, and these hydrophobic interactions were predicted to contribute
to failure of therapy by stabilizing viral protein complexes. Using our analysis to detect patterns within the net-
works, we could predict the outcome of therapy with greater than 95% coverage and 100% accuracy, raising the
possibility of a prognostic test to reduce therapeutic failures. Furthermore, the hub positions in the networks
are attractive antiviral targets because of their genetic linkage with many other positions that we predict would
suppress evolution of resistant variants. Finally, covariance network analysis could be applicable to any virus

with sufficient genetic variation, including most human RNA viruses.

Introduction

HCYV chronically infects about 3.8 million Americans and causes
8,000-10,000 deaths each year in the United States by induc-
ing liver failure or hepatocellular carcinoma (1). HCV infection
is treated with a combination of pegylated IFN-a and ribavirin.
Treatment for 24-48 weeks clears the virus — referred to herein
as sustained viral response (SVR) — in 50%-60% of genotype 1
patients (2, 3). IFN-a provides the primary antiviral effect and can
clear HCV when used alone (4, 5). When ribavirin is taken with
IFN-q, it roughly doubles the clearance rate (4-6). There are no
effective therapies for patients who fail to clear virus following
IFN-o plus ribavirin therapy, and the reasons for the high rate of
therapeutic failures are unknown.

HCV is a hepatotropic Flavivirus that persistently infects
hepatocytes and some lymphocytes (reviewed in ref. 7). The virus
is composed of a lipid envelope derived from host cell membranes
in which the viral glycoproteins E1 and E2 are embedded. Within
the envelope is a capsid formed by the viral core protein that sur-
rounds the viral RNA genome. The approximately 9,600-nt posi-
tive-polarity RNA genome is translated to produce a polyprotein of
about 3,010 amino acids (Figure 1). The polyprotein is cleaved to
produce 10 viral proteins. The nonstructural proteins, P7 through
NSSB, replicate the viral RNA on modified host membranes. After
genomic replication, virions assemble and are secreted from the cell
noncytolytically. It is believed that all HCV proteins form multipro-
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tein complexes during viral replication and/or during assembly of
the virion (8,9). Furthermore, many HCV proteins interact with cel-
lular proteins to modify host cell responses, particularly the type 1
IFN response that is induced by viral replication and whose role is
to suppress viral persistence and spread (10).

The HCV genome is highly variable, with 6 genotypes that are
less than 72% identical at the nucleotide level (11-14). Within the
genotypes, subtypes with nucleotide identities of 75%-86% may
occur. Individual isolates of a given subtype typically differ by
about 8%-10%, and, as HCV replicates as quasispecies, multiple
variants differing by up to a few percent exist even within indi-
vidual patients. Viral genetic variation at the genotype level clearly
affects the outcome of antiviral therapy, because genotype 1 is
cleared by IFN-o and ribavirin only about half of the time, whereas
response rates for genotypes 2 and 3 are typically greater than 80%
(3, 15). However, the effect of HCV sequence variation within the
major genotypes on response to therapy is not understood.

The Viral Resistance to Antiviral Therapy of Chronic Hepatitis C
(Virahep-C) clinical study previously investigated the efficacy of
pegylated IFN-a plus ribavirin for treating genotype 1 HCV (16).
As part of the Virahep-C study, we analyzed viral genetic pat-
terns associated with response or failure of therapy (17, 18). We
sequenced the complete pretreatment HCV open reading frame
(ORF) from 94 patients and found that HCV genetic variability
among sequences from patients in whom therapy efficiently sup-
pressed the virus was significantly higher than among sequences
from patients in whom suppression was minimal. We interpreted
the association of higher interpatient HCV genetic diversity with
response to therapy to imply that HCV survived in the nonre-
sponders because there were only a few ways to optimize activity of
the viral proteins, but many ways to interfere with their function.
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The HCV ORF. The approximately 9,600-nt positive-polar-
ity HCV RNA genome encodes a long ORF. The ORF is
translated into an approximately 3,010—amino acid poly-
protein that is cleaved to 10 mature proteins. The known
or predicted functions of the proteins are indicated.
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RMNA polymerase

Our previous analysis of the Virahep-C sequences treated varia-
tion at each amino acid position as being independent from all
others. However, this is an oversimplification because amino acids
interact with other residues, both within a given protein and in
other proteins. Hence, we hypothesized that a global analysis of
the viral genome in the context of response to therapy would pro-
vide new insights on how the virus may evade the selective pres-
sures applied by the drugs.

To test this hypothesis, we analyzed the complete protein cod-
ing region of the pretherapy Virahep-C HCV sequences for pairs
of amino acid positions that varied in concert among independent
viral isolates (i.e., covariance) and then asked whether there were
differences in the patterns of these covariances in responders and
nonresponders to therapy. Covariance analysis has previously been
used to identify residue pairs directly interacting in 3-dimensional
structures (19-24), to infer protein/protein interactions (25), to
examine allosteric interactions within proteins (26, 27), and to eval-
uate the relative functional importance of residues in proteins (28).
Our genome-wide analysis revealed the existence of genetic interac-
tions, which we believe to be novel, that were interwoven through
the HCV genome. Importantly, these interactions were very differ-
ent in responders and nonresponders to IFN-based therapy; hence,
they may permit prediction of the outcome of therapy.

Results
Virahep-C cobort and HCV sequences. The consensus pretreatment
sequences for the full-length HCV ORF were previously deter-
mined from 94 participants in the Virahep-C study (17). The char-
acteristics of these patients are shown in Table 1. Most analyses
were performed on all 94 sequences, stratified either by genotype
(1a versus 1b) or by genotype plus outcome of therapy. In most
cases, we also stratified the samples by genotype plus the
extremes of early (day 28) response to therapy, in order to
eliminate confounding nonbiological effects on changes
in viral titre (such as insufficient drug intake). The day-28
response categories were Marked, Intermediate, and Poor
(see Methods). The day-28 stratifications used the 63

the observed minus expected squared (OMES) method (29). The
null model in this method is the expected number of covarying
pairs, based on the independent count of the amino acids at each
of the 2 positions. Covarying positions were defined as those pairs
with scores of at least 0.5, corresponding to a difference of at least
3 covarying pairs between the observed and expected in an align-
ment of 16 samples. This cutoff was chosen because it was the low-
est value that was not greatly influenced by noise, and it allowed
us to retain the maximum amount of potentially informative data
(see Methods). The covarying positions and amino acid pairs are
shown in Supplemental Table 1 (supplemental material available
online with this article; doi:10.1172/JCI37085DS1).

There were 246 covarying positions in genotype la and 280 in
genotype 1b (Table 2), representing about 10% of the 2,955 col-
umns in the alignment for each genotype. The covarying posi-
tions were spread throughout the genome, with positions in each
of the 10 viral genes covarying with positions in each of the other
9 genes. These covarying positions, with the exception of posi-
tion 1,583, are different than the adaptive mutations required
for efficient HCV RNA replication in the replicon culture system
(30-32). Furthermore, there was a pronounced underrepresenta-
tion among the covariances of residues that have been demon-
strated through molecular or biochemical analyses to be essen-
tial for protein function. This is because covariance by definition
requires genetic variation; thus, very highly conserved positions
were excluded from this analysis.

The difference between the number of covarying positions in the
Marked and Poor response classes (202 vs. 172 for 1aand 265 vs. 195
for 1b; Table 2) was not significant for either genotype by Fisher’s
exact test (P> 0.1). Similarly, no significant differences in the num-
ber of covarying positions were found when the SVR and Non-SVR

Table 1
Baseline characteristics of the Virahep-C cohort

Characteristic Marked Intermediate Poor P

Marked and Poor sequences. Table 2 shows the number (n=31) (n=31) (n=32)
of samples in the day-28 and treatment outcome classes AA, no. (%) 16 (51.6%) 15 (48.4%) 16(50.0%) 0.97A
for genotypes 1aand 1b. Male, no. (%) 22(71.0%)  25(80.7%) 21 (65.6%) 0.40%

Identification of covarying amino acid positions. To identify Age, yr 465 (6.2) 481(67) 49.4(838) 0.308
covarying amino acid positions in the HCV ORF, we first Body wt, kg 84 9(16.8) 88 6 (14.6) 91 0(135)  0.288
created 10 multiple sequence alignments of the Virahep-C HCV RNA, logso IU/ml 9(0.9) 5 (0.6) 4(0.5) 0.003¢
sequences: la All, 1a Marked, 1a Poor, 1a SVR, 1a Non- ALT, U/ 79 0 (52.3) 70 6 (36.3) 86 3 (43.6)  0.17°
SVR, 1b All, 1b Marked, 1b Poor, 1b SVR, and 1b Non- Albumin, g/dl 1(0.4) 2(0.3) 2(03) 029
SVR. A covariance score for every possible pair of the 2,955 Ishak necroinflammatory® 7.2 (2.5) 4(3.0) 9(27) 0.52¢
positions in each alignment was calculated by squar- Ishak fibrosis* 8(1.3) 8(13) 3(1.4) 0.15°

ing the difference between the number of observed and

expected amino acid pairs and normalizing this difference
by the number of entries (excluding gaps) in each column,
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Data adapted from ref. 17. Unless otherwise indicated, data are reported as mean
(SD). AA, African American. Ay2 test. BANOVA. CKruskal-Walllis; missing = 1. PNecro-
inflammatory score, graded on a 018 scale. EFibrosis score, graded on a 0-6 scale.
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Table 2

Network characteristics

Genotype/class No. samples  Nodes? Edges® Density®
1aAll 47 246 3,080 0.1022
1a Marked 16 202 1,850 0.0910
1a Poor 16 172 2,119 0.1441
1a SVR 22 223 2,136 0.0863
1a Non-SVR 25 217 1,796 0.0766
1b All 47 280 2,189 0.0560
1b Marked 15 265 1,490 0.0425
1b Poor 16 195 1,237 0.0654
1b SVR 26 262 1,512 0.0442
1b Non-SVR 21 221 1,740 0.0716

APositions in the sequence alignments that covary. BAmino acid pairs
that covary; each node may have multiple edges. °Number of edges
per node.

sequences were compared (223 vs. 217 for 1a, 262 vs. 221 for 1b).
Therefore, covarying positions were common and widespread in the
HCV genome, but there were no significant differences in the num-
ber of covarying positions between the response classes.

Covarying positions form networks. Inspection of the covarying posi-
tions revealed that one member of a covarying pair often covaried
with one or more other positions. This led us to hypothesize that
the covarying positions may be linked into a network. To test this
hypothesis, we performed a complete clustering analysis on an
alignments of all 47 sequences for each genotype, 1a and 1b. The
results were presented as graphs, in which the nodes represent posi-
tions in the sequence alignment and pairs of nodes were connected
by aline (referred to herein as an edge) if they had a covariance score
of atleast 0.5. We found that the covarying positions indeed formed
networks (Figure 2, A and C, and Table 2). Both the networks fol-
lowed the inverse power law distribution, in which the probability
that any node has k edges is given by the equation Pr(k) = k¥ (33,
34). For 1a, y equaled 0.98 (Figure 2B), and for 1b, y equaled 1.1
(Figure 2D). This finding indicates that the networks had hub-and-
spoke architectures, in which a few nodes covaried with many oth-
ers, but most nodes covaried with only few others. The covariances
(edges) between amino acid positions that were most highly con-
nected (hubs) had scores at or near the maximal value possible for
alignments of this size. This indicates that there were very strong
selective pressures for certain amino acid combinations and against
other combinations at these pairs of positions.

To evaluate the generality of these networks, we sought to deter-
mine whether the covariance networks found in the Virahep-C
sequences were representative of networks derived from HCV
sequences in general circulation. A set of 118 full-length genotype
la sequences from non-Virahep-C patients was collected, and their
polyprotein amino acid sequences were deduced. We randomly
chose 10 sets of 47 amino acid sequences from the set of 118, and
each set was aligned and independently subjected to covariance
analysis. The distribution of the covariance scores in the 10 ran-
dom sets of 47 sequences were compared in a pairwise manner by
the Kolmogorov-Smirnov test, and the P values ranged from 0.23
to 0.38 (P = NS). This indicates that the score distributions were
statistically indistinguishable among the 10 random sequence sets.
The distribution of covariance scores in the Virahep-C 1a All net-
work (47 sequences) was then compared with the distribution in

The Journal of Clinical Investigation

htep://www.jci.org

technical advance

each of the 10 random permutations. These P values ranged from
0.23 to0 0.32. Therefore, the distribution of covariance scores with-
in the Virahep-C data set was very similar to that in non-Virahep-C
data sets of equivalent size. In addition, the number of nodes, the
number of edges, and the edge density were all similar among the
11 sequence sets, and the top 4 hub nodes were the same forall 11
sets. Therefore, the covariances and covariance networks found in
the Virahep-C sequences were representative of a randomly chosen
set of HCV sequences.

Connectivity of the covariance networks differs by response class. We
next examined the characteristics of the networks that were gener-
ated from the sequences when they were stratified by response of
the patient to antiviral therapy (Marked, Poor, SVR, or Non-SVR).
The characteristics of the 8 response-specific covariance networks
are shown in Table 2, and the 1a Marked and 1a Poor networks are
shown in Figure 3, A and C. The networks all had a hub-and-spoke
architecture, with y ranging about 1.0 to 1.2, and the numbers of
nodes and edges were similar between the contrasting response
classes (Marked versus Poor and SVR versus Non-SVR; Table 2).
Similarly, more than half of the amino acid positions that formed
the nodes in the networks were shared between the contrasting
response classes (Figure 4, A and B). However, the pairs of positions
forming the networks from the contrasting phenotypes were very
different, with relatively few edges shared between them (Table 3
and Figure 4, C and D). This difference in connectivity among the
nodes led to differences in the identity of the most highly con-
nected hubs between the networks for the various response classes
(Table 4). For example, the positions that were most highly inter-
connected for 1a were within NS2, NS4A, and E2 in the Marked
responders, but in P7, E2, and NS5A in the Poor responders.
Furthermore, most nodes within the Poor and Non-SVR nonre-
sponder networks were more highly connected than were most
nodes in the Marked and SVR responder networks. An example is
in Figure 3, B and D, which compare first-neighbor networks for
residue 463 in the 1a Marked and 1a Poor networks. Therefore,
networks with similar numbers of covarying amino acid positions
were found in all response classes, but the patterns of connections
among the covarying residues were very different in the contrast-
ing response classes.

To test the possibility that the differences between the Marked
and Poor networks may have occurred by chance, we generated
alignments in which we randomly exchanged sequences between the
Marked and Poor responders. The covariance analysis was repeat-
ed for 10 iterations at 3 levels of randomly exchanged sequences:
12.5% (2 of 16 genomes), 25% (4 of 16 genomes), and 37.5% (6 of
16 genomes). An example of 1a Marked responders shuffled with
1a Poor responders is shown in Figure 5. Exchanging 2 sequences
in the shuffled networks led to the loss of approximately 15% of
the nodes and edges (e.g., the residue positions and their interac-
tions) found in the unshuffled alignments. At 4 sequences shuf-
fled, the number of edges and nodes decreased further, and when 6
sequences were shuffled, there was a large loss of the original nodes
and edges. In every case, the covarying positions that were present
in the shuffled alignments were also found in the All alignment.
The results of these control analyses indicate that (a) the response-
specific networks are not so sensitive to replacement of sequences
that they exist on the edge of chaos; and (b) although the networks
are not hypersensitive to mixing of the phenotypic classes, they
do depend on the phenotypic clustering of the sequences for their
integrity. Together, these observations indicate that the covarying
Volume 119
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Figure 2

The All covariance networks. Each net-
work is composed of 47 sequences per
genotype, 1a (A and B) and 1b (C and D),
totaling 94 sequences. (A and C) Networks
formed by the covariances. The nodes rep-
resent covarying amino acid positions, and
the edges represent covariances between
the nodes. The most highly connected
nodes are in yellow. (B and D) Edge distri-
bution for the genotype networks.

Number observed

Number observed

Number of edges
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Figure 3
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Marked

The connectivity of the response-specific covariance networks is different. Shown are 1a Marked (A and B) and 1a Poor (C and D) response
classes. (A and C) Networks formed by the covariant pairs of residue positions. The most highly connected nodes are in yellow. (B and D) Posi-
tions that directly covary with position 463 (square node) are shown to highlight the differences between the networks.

pairs identified for the response classes were not generated by ran-
dom chance and therefore reflect a feature of the viruses infecting
the patients in the various response classes.

HCV replicates as a quasispecies, but our analyses were per-
formed with the consensus sequences (the most common residue
at each position) from each individual; consequently, the quasispe-
cies variation within an individual could affect the network. The
shuffling experiment in Figure 5 revealed that the networks could
withstand replacement of at least 25% of the sequences with oth-
ers that vary by about 10%. The quasispecies variation within an
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individual is typically approximately 1%, but can reach up to about
4% in some patients; hence, the networks were tolerant of varia-
tion that was considerably larger than the quasispecies variability
typical for an individual. In addition, analysis of the frequency
of each degenerate nucleotide position in the codons for the top
5 hub positions for the Marked and Poor sequences (Table 4)
revealed that the probability that a given viral RNA molecule in
the quasispecies spectrum encoded all 5 of the hub consensus
sequence residues was 93% for the Marked sequences and 82% for
the Poor sequences. Finally, near-full-length HCV quasispecies
Number 1
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1a 1b

A Marked Poor B Marked Poor
202 nodes 172 nodes 265 nodes 195 nodes

All 246
nodes

All 280
nodes

S

SVR Non-SVR SVR Non-SVR
223 nodes 217 nodes 262 nodes 221 nodes
C Marked Poor D Marked Poor
1850 edges 2119 edges 1490 edges 1237 edges

/_All 3080

edges

SVR Non-SVR SVR Non-SVR
2136 edges 1796 edges 1512 edges 1740 edges
Figure 4

Segregation of the edges and nodes by phenotype. The overlap and
segregation of the covarying nodes (A and B) and edges (C and D) by
response class is shown for genotype 1a (A and C) and 1b (B and D).

variants have previously been analyzed in 2 genotype 1a patients,
with 6 variants sequenced per patient (35, 36). In one patient, the
residues at the top 5 hubs from our All network were identical in
the consensus sequence derived from the quasispecies variants
and in all 6 of the variants, and in the other patient there was a
single substitution at one hub position in one of the 6 quasispe-
cies variants. Therefore, the central portion of the All network was
perfectly conserved in 11 of the 12 (92%) quasispecies variants for
which the integrity of the networks can be assessed.

The spectrum of HCV isolates circulating in the human popula-
tion appears to range from relatively resistant to relatively sensitive
sequences in their responses to IFN-based therapy (17). Therefore,
if the covariance networks accurately reflect the HCV population
as a whole, essentially every covariance in the All networks — com-
posed of the full set of 47 sequences for each genotype — should
be present in at least one of the response-specific networks (i.e.,
Marked, Poor, SVR, or Non-SVR). To test this prediction, the All
networks, generated from alignments of all 47 1a or 1b sequences,
were compared with the response-specific networks. As predicted,
every node in the All networks was in at least one of the response-
specific networks (Figure 4, A and B). Similarly, every edge in the
All networks was also found in one or more of the response-specific
networks (Figure 4, C and D). This indicates that no new interac-
tions appeared by chance in the full set of sequences and that the
information in the All network was also found within the subsets
segregated by treatment response.

Topological assessment of the covarying positions. Genetic covariance
is indicative of a functional interaction between the covarying
residues. Covariance interactions are often caused by direct bind-
ing between the residues, but other interactions, such as compen-

230 The Journal of Clinical Investigation

http://www.jci.org

satory allosteric changes, are also common. HCV replication and
assembly involve multicomponent complexes composed of viral
and possibly cellular proteins. Furthermore, these processes take
place in association with cytoplasmic membranes (8, 9); hence,
all or nearly all HCV proteins are membrane associated. There-
fore, to evaluate whether the covarying residues could interact
directly with each other, we evaluated their topological orienta-
tion relative to cellular membranes using the experimentally
known orientations or inferred orientations for those residues
lacking experimental data (8). In 1a, we found that for the 714
covarying amino acid pairs in which both residues were within
the same protein, 672 were in the same compartment, 41 were in
adjacent compartments (e.g., cytosol and transmembrane), and 1
was in nonadjacent compartments (e.g., lumen and cytosol). For
1b, there were 460 pairs in the same compartment, 38 in adjacent
compartments, and 10 in nonadjacent compartments among the
508 covarying pairs in the same protein. When this analysis was
expanded to include all interactions in the networks, we found
that nearly 75% of the pairs occurred in the same or adjacent
compartments for both subtypes. This indicates that many of the
covarying pairs could be in direct contact with each other and/or
interact with a common partner.

Structural assessment of covarying positions. The possibility that some
of the covarying residues may contact each other can be tested for
all or part of NS2, NS3, NSSA, and NS5B because crystal struc-
tures are available for these proteins. To this end, we mapped the
covariant amino acid pairs within these proteins onto the struc-
tures. For 1a, there were 39 covarying pairs within the NS2 crystal
structure. The covarying residues were on the solvent-accessible
surface of the protein for 29 of the pairs, but none of the paired
residues were close enough to bind to each other (<7.5 A). For
1b, there were 88 pairs in the structure. Of these, 80 were solvent
exposed, but the residues in only 1 pair were within 7.5 A of each
other. For NS3, there were 26 covariant pairs for 1a and 32 for 1b.
Although all of these pairs were on solvent-exposed surfaces, none
of the paired residues were within 7.5 A of each other. No intrapro-
tein pairs were found within the N-terminal third of NS5A thatis
in the crystal structure. There were 21 covarying pairs within la
NSSB and 67 pairs in 1b, and all of these were on the surface of
the protein, but again, none of the covarying residues were within
7.5 A of each other. Therefore, the large majority of the covarying
residues in the available protein structures cannot bind directly
to each other. However, most of the covarying residues are on the
solvent-exposed surfaces of their respective proteins, where they
may be involved in intermolecular interactions with other cellular
or viral components.

X-ray cocrystal structures are needed to provide sufficient reso-
lution to evaluate the possibility of direct intermolecular binding
between covarying residues, and the only such data currently avail-

Table 3
Segregation of edges by phenotype

Genotype/response  Responders® Intersection Nonresponders®
1a Day 28 1,850 524 2,119
1a Sustained 2,136 508 1,796
1b Day 28 1,490 103 1,237
1b Sustained 1,512 158 1,740

AMarked or SVR class. BPoor or Non-SVR class.

Volume 119 Number1  January 2009



Table 4
Top 5 most-connected nodes by response class
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Rank All Marked Poor SVR Non-SVR

Node Edges Protein Node Edges Protein Node Edges Protein Node Edges Protein Node Edges Protein
1a genotype
1 242 89 E1 1,686 57 NS4A 2,050 72 NS5A 216 66 E1 610 61 E2
2 482 83 E2 883 57 NS2 610 69 E2 481 65 E2 242 57 E1
3 753 82 p7 904 56 NS2 753 69 P7 1,756 65 NS4B 1,200 57 NS3
4 610 82 E2 655 56 E2 626 68 E2 814 64 NS2 463 56 E2
5 710 81 E2 481 56 E2 482 68 E2 753 63 P7 710 52 E2
1b genotype
1 891 62 NS2 2,257 38 NS5A 524 31 E2 880 35 NS2 720 45 E2
2 887 51 NS2 856 37 NS2 891 29 NS2 434 35 E2 741 44 E2
3 1,496 50 NS3 2,143 36 NS5A 768 29 P7 608 33 E2 2,543 42 NS5B
4 720 48 E2 887 34 NS2 407 29 E2 2,009 33 NS5A 480 4 E2
5 479 48 E2 916 32 NS2 1,011 29 NS2 2,169 32 NS5A 466 40 E2

able are for the NS3/NS4A complex (NS4A is a peptide cofactor
for NS3 that folds into the NS3 structure). There were 2 covari-
ances in our data set between 1a NS3 and NS4A in which both
residues were within the structure, residue pairs 1,106/1,686 and
1,117/1,686. Residues 1,106 (NS3) and 1,686 (NS4A) are sepa-
rated only by an intervening protein chain; therefore, variations
at these sites could easily communicate with each other through
minor alterations to the local protein structure. Covarying resi-
dues 1,117 (NS3) and 1,686 (NS4A) are located far from each other
in 3-dimensional space, and consequently a cascade of allosteric
interactions through the protein would be needed for them to
communicate with each other. Therefore, the limited data avail-
able indicate that the covariance interactions may involve both
local and long-distance allosteric interactions.

Nonresponder networks have more hydrophobic pairs. To analyze the
nature of the interactions between the covarying residues, we asked
whether differences exist in the chemical nature of the covarying
amino acid pairs within the networks. In both subtypes, hydropho-
bic pairs (i.e., Ile-Leu or Phe-Leu) were significantly more common
in the Poor responders than in the Marked responders (3.2-fold
in la and 3.5-fold in 1b; Table 5). Similar excesses of hydropho-
bic pairs were found in the Non-SVR networks relative to the SVR
networks. The high frequency of hydrophobic amino acid pairs
was a property of the covarying residue pairs in the networks,
and not a feature of the sequences as a whole because there were
no significant differences in the average number of hydrophobic
amino acids between the Marked and Poor or SVR and Non-SVR
sequences in either genotype (Table 5).

Identification of potential biomarkers for prediction of therapy outcome.
The differences between the SVR and Non-SVR covariance net-
works imply that the patterns of covariances in the pretreatment
sequences could be used to predict the outcome of therapy. Cova-
riance by definition requires that the amino acid positions being
compared are variable in a sequence set; consequently, only a frac-
tion of the sequences will contain any given covarying pair. In our
analysis, a given covarying pair was found in at most 60% of the
sequences. Therefore, we asked whether subnetworks with a lim-
ited number of nodes could be identified that could be used as bio-
markers to predict treatment outcome in a majority of patients.
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To identify potentially predictive subnetworks, we began with
each covariance in the SVR or Non-SVR networks and then added
the nearest-neighbor covariances in a stepwise fashion, keeping
covariances in the growing subnetworks if they increased the
proportion of patients for which the subnetwork was accurately
associated with outcome of therapy (i.e., coverage). This process
was repeated exhaustively until the coverage for each growing sub-
network could no longer be increased. More than 64,000 subnet-
works were created by this process. We then selected the subnet-
works that were associated with outcome at 100% accuracy with
0% false positive associations (i.e., the covariances were found in
the only the desired outcome class and never in the contrasting
class), and then ranked them by their coverage to identify the sub-

P<4.50x10°

}

<
o

o
o

P<4.16 x 107

o
~N

o
(o)}
SO o

b
wn

o
™~
*

o
w

Fraction true positives

o
[

P<9.65x 10"

o

* @

o
o

15 20 25
Percent shuffled

o
w

35 40

Figure 5

Random shuffling of sequences causes loss of information in the
response-specific networks. We generated 10 independent align-
ments, in which 1a Marked sequences were randomly replaced with
1a Poor sequences at 3 levels of replacement: 2, 4, or 6 sequences,
giving 12.5%, 25%, and 37.5% sequences shuffled, respectively.
Shown are proportions of true positive covarying pairs relative to the
unshuffled Marked sequences. P values showing significance of the
differences in conserved edges relative to the unshuffled network were
determined by Student’s t test.
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Table 5
Number of hydrophobic amino acids in the genome and hydro-
phobic residue pairs in the covariance networks

Class Network pairs Residues per genome
1a 1b 1a 1b

Poor 1,135 773 1,605+£3.6 1,599 +5.1

Marked 354 223 1,604+6.4 160364

Total 3,445 2,624

P 2x1010 2 x10-16

Non-SVR 685 1,428 1,605+34 1,599+6.1

SVR 214 408 1,604 +6.0 1,602+5.8

Total 3,424 3,094

P 2x 107 4 x 10716

Hydrophobic residues per genome are shown as mean + SD. P values
were calculated by Fisher’s exact test.

networks that covered the maximal number of patients. Several
hundred subnetworks were found that perfectly associated with
outcome and had maximal coverage (95.5%-100%, depending on
outcome class). We then limited the results to subnetworks com-
posed solely of covariances with the 10% highest covariance scores
to ensure that we were using the most robust regions of the net-
works. Figure 6 shows 3 examples for each response class. These
subnetworks had 4-8 nodes, were 100% accurate, had no false
associations, and covered 95.5%-100% of the samples. Therefore,
we conclude that patterns of amino acid covariance in a handful
of positions are closely associated with the outcome of antiviral
therapy, and these covariances are potential biomarkers for pre-
diction of the outcome of therapy.

Discussion
We previously found that HCV sequences from patients who
responded well to pegylated IFN-o. and ribavirin were more variable
than were poor responders in genes implicated in counteracting
the type 1 IFN response (17). We interpreted this to mean that viral
isolates with a relatively tight genetic distribution around an opti-
mum sequence were more able to withstand the pressures induced
by therapy, and those that were more distant from this optimum
were less able to survive, presumably as a result of the presence of
multiple variations that each reduced the overall efficacy of the viral
proteins. Here, we found that genome-wide networks of covarying
amino acids existed, that the connections within the networks
(connectivity) were different in the responders and nonresponders,
and that the nonresponder networks had many more hydrophobic
amino acid pairs than did the responder networks.

The covariance networks covered all 10 HCV proteins and all had
hub-and-spoke architectures, which indicates that a few residues
covaried with many other residues but that most covaried with
only a few other positions. The network connectivity was very dif-
ferent between the Marked and Poor and between the SVR and
Non-SVR response classes. Therefore, the genetic and functional
interactions represented by the covariances in the response-spe-
cific networks may represent HCV genetic differences that affect
the ability of the viruses to withstand the pressures of therapy.
There was a large overlap in the covariances in the networks from
the responder Marked and SVR classes, and a similar overlap was
found in the nonresponder Poor and Non-SVR classes, for both
232
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genotypes (Figure 4). Therefore, the viral variables reflected in
these networks that affect the day-28 response to therapy were
similar to those affecting the outcome of therapy.

Genome-wide covariance analysis has very recently been used by
Campo and colleagues to assess coordinated evolution of residues
throughout the HCV genome (37). This work was performed inde-
pendently of our analysis and used a different method to identify
the covariances, but the results from the 2 studies were very simi-
lar. The algorithm used by Campo et al. assessed the physiochemi-
cal properties of residues at the 10% of most variable positions
in an alignment of 114 genotype 1b HCV amino acid sequences.
Similar to our results, the covariances they identified linked into
a hub-and-spoke network that encompassed all 10 of the proteins
encoded in the HCV polyprotein; this network was analogous to
our 1b All network. Furthermore, many of the most highly con-
nected hubs in the Campo network were also found in our 1b net-
works that were generated without regard to the physiochemical
properties of the amino acids. Campo and colleagues concluded
that the network was a tightly coordinated unit that was function-
ally and/or structurally connected (37), in full agreement with our
present conclusions. Although the Campo sequences were not
stratified by outcome of antiviral therapy, and thus their network
cannot be used to evaluate differential sensitivity to IFN-a-based
therapy, their results are important to our work because they pro-
vide an independent validation of the existence of an All network.
By extension, they also support the validity of the response-specific
networks, because every covariance and node in our All network
was also found in one or more of the response-specific networks.

Genetic covariance indicates a functional interaction between
the covarying residues, but it does not identify the nature of the
interaction. The functional linkages could involve direct binding
between the covarying residues, compensatory allosteric changes
within a protein, and/or compensatory changes on the surface of
the HCV proteins where they interact with host or other viral pro-
teins. Examples of all of these mechanisms are likely to be present
among the large number of covariances we identified, but a major
mechanism by which the differences between the responder and
nonresponder networks may contribute to differential response
to IFN-a-based therapy was revealed by the chemical nature of
the covarying residues. The covariance networks from the nonre-
sponder Poor and Non-SVR classes had greater than 3-fold more
hydrophobic residue pairs than did sequences from the responder
Marked and SVR classes (Table 5). In contrast, the responders had
many more hydrogen bond donors or acidic-basic residue pairs.
Hydrophobic interactions contribute much more to protein sta-
bility in an aqueous environment than do hydrophilic interac-
tions. Therefore, the potential for greater stability provided by the
higher hydrophobic nature of the interactions may allow some of
the viruses in the population to better survive the pressures intro-
duced by therapy. However, because the covariant residues were
rarely close enough to bind to each other directly, we predict that
in most cases the increased hydrophobicity provided by the covari-
ant pairs would stabilize multiprotein complexes rather than the
structure of a given protein.

IFN-a activates a multitude of host barriers that limit the spread
of infection (10), and ribavirin has at least 3 proposed effects
against HCV (38). Therefore, it is highly unlikely that the general-
ized increase in the hydrophobic nature of the covarying residue
pairs in viruses from nonresponders acts through a few discrete
intermolecular interactions. Rather, the simplest explanation is
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Genotype and Figure 6
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that the sum of these interactions strengthened complexes involv-
ing viral proteins. In the structural proteins that form the virion
(core, E1,and E2), the greater number of hydrophobic interactions
would be predicted to stabilize the virus particle and to somehow
increase its infectivity and/or resistance to degradation by IFN-
induced mechanisms. The predicted increase in the stability of
complexes including the nonstructural proteins (P7, NS2, NS3,
NS4A, NS4B, NS5A, and NS5B) would presumably both stabi-
lize the replicase complex to reduce its sensitivity to effectors of
the IFN-a response and improve the ability of the viral proteins
to interdict the cellular type 1 IFN response (e.g., the ability of
NS3/NS4A to block sensing of double-stranded RNA by TLR3
and RIG-L ref. 10). The mechanisms by which the structural and
nonstructural proteins function during viral replication and the
generalized increase of hydrophobic residue pairs in the responder
networks together imply that clearance of the virus during IFN-o.-
based therapy may be aided by both lower cell-to-cell infectivity of
the virions and higher sensitivity of the viral components within
cells to the drugs.

Furthermore, the majority of the covariances probably reflect
compensatory variations among multiprotein complexes com-
posed primarily of viral proteins. The justification for this pre-
diction is that host proteins do not vary with the high frequency
observed among HCV sequences, with the exception of the antigen-
binding regions of the immunoglobulins and the T cell receptors.
However, escape from cell-mediated immunity is unlikely to be the
dominant force driving development of the covariance network
because sets of T cell epitopes would need to coevolve, but T cell
epitopes are short linear peptides, and very few of the covariances
were adjacent to one another in the linear amino acid sequence.
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Effective antibody-mediated selective pressures would also be
unable to generate the genome-wide covariance networks because
these pressures would be largely limited to the E1 and E2 surface
glycoproteins that form the exterior of the virion, but covariances
were found among all 10 HCV proteins. Therefore, the high degree
of variation — and covariation — among the HCV sequences is not
needed to accommodate the limited sequence diversity present in
the vast majority of human genes. However, some of the covari-
ances between different HCV proteins could represent compensa-
tory adaptations between HCV proteins to maintain a common
interaction with a third partner that may be of host origin.

The presence of amino acid covariance networks in the HCV
genome specific to the outcome of antiviral therapy has 3 prac-
tical implications for personalized medicine. First, the nonover-
lapping regions of the covariance networks from the Marked and
Poor response classes (Table 3 and Figure 4) may provide a basis
for a sequence-based test that could predict the susceptibility of
individual HCV isolates to IFN-a-based therapies. Our initial
assessment of such biomarker positions (Figure 6) is very promis-
ing, because hundreds of subnetworks providing 100% accuracy
and greater than 90% coverage for prediction of both SVR and
Non-SVR were found.

However, the precision by which the networks may be able to
predict the outcome of therapy must be viewed with some reserve,
because although the All networks have been validated in external
data sets by us and others (37), we cannot yet externally validate
the response-based networks. This is because no non-Virahep-C
sequence set exists for which the outcome of IFN-based therapy is
available. We anticipate that the ability of the networks to predict
treatment outcome will be less robust outside of this training set
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because the relatively small number of sequences available could
have led to overestimation of the degree of separation between the
treatment outcome networks. However, the large genetic diversity
differences between the response classes (17), the extensive over-
lap between the congruent response-based networks (Marked
with SVR and Poor with Non-SVR), and the largely nonoverlap-
ping nature of the contrasting networks (Marked versus Poor and
SVR versus Non-SVR) all imply that HCV sequence variation has a
major role in determining the outcome of therapy. Therefore, the
large number of potential covariance biomarkers available and the
ability to simultaneously consider multiple subnetworks strongly
imply that a clinically useful predictive test could be designed.

The differences between the 1a and 1b networks indicates that
predictive tests based on the covariance networks will need to
be customized for each subtype. However, even with customiza-
tion, such tests would be highly cost effective because chip-based
assays could be designed for about $100 per sample, whereas the
drugs used in a failed course of therapy can cost up to $30,000
(39). We anticipate that the ability to predict nonresponse would
be the most practical form of the assay, because treatment of a sus-
ceptible HCV isolate could still result in Non-SVR through drug
intolerance or noncompliance. In this context, physicians could
counsel against IFN-o-based therapy, avoiding tens of thousands
of dollars in expenses and painful side effects for the patient. For
example, more than 250 HCV patients are treated at Saint Louis
University Hospital per year, and if futile treatment of just half of
the nonresponders (approximately 62 patients) was eliminated at
a cost of about $25,000 for the screening assay, the savings could
be up to $1.8 million in drug costs alone.

The second medical implication for these networks is that the
highly connected hub residues have a large number of functional
interactions with other residues; hence, disrupting a hub would
be predicted to weaken this web of interactions. Therefore, the
hubs may be valuable antiviral drug targets. This is an attractive
concept because knockout of hubs in interaction networks has
previously been shown to be lethal in several different organisms
(40-42). Targeting variable sites for drug design is counterintui-
tive, but it should be feasible for anti-HCV therapy, because new
anti-HCV drugs are likely to be used in conjunction with IFN-o.
Therefore, an anti-hub drug would be designed to inhibit the
IFN-resistant hub configuration, leaving variant viruses with the
IFN-sensitive configuration to be eliminated by IFN-a.. Targeting
the hubs would be especially attractive because evolution of resis-
tant mutants should be slow, as a result of the high genetic cost of
mutating a highly interconnected residue without simultaneously
mutating many of its covarying partners.

Finally, the high error rate of RNA synthesis that is a fundamen-
tal feature of RNA virus replication leads to high genetic diver-
sity among these viruses. Therefore, covariance network analysis
should be applicable to essentially all RNA viruses. If similar net-
works correlating with virulence or drug sensitivity exist in other
viruses, covariance network analysis should open a wide range of
diagnostic and therapeutic options in medical, veterinary, and
agricultural settings.

Methods

Patients and response classes. We used 94 viral pretreatment sequences derived
from participants in the Virahep-C clinical study (16). Each patient received
full doses of pegylated IFN-o. and ribavirin for the first 28 days. This research
was conducted in accordance with the Helsinki principles: all patients gave
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informed, written consent prior to their participation in Virahep-C and
its associated basic science components, and all components of Virahep-C
were approved by their local Institutional Review Boards. The Virahep-C
viral genetics cohort (17) was selected to be evenly stratified by genotype,
la versus 1b, and by day-28 responses to therapy. Marked responders had
a decline in HCV titres greater than 3.5 logyo or to undetectable between
baseline and day 28 of therapy, Intermediate responders had declines of
3.5-1.4logo, and Poor responders had declines less than 1.4 logie. In the
analyses reported here, the samples were stratified by either genotype (1a
or 1b), genotype plus treatment outcome (SVR or Non-SVR), or genotype
plus the extremes of early response to therapy (Marked or Poor). The 118
non-Virahep-C HCV genotype 1a sequences used for external validation
were downloaded from the Hepatitis C Database of the Broad Institute
(http://www.broad.mit.edu/annotation/viral/HCV/Home. html).

Sequencing. Consensus sequences for the HCV ORF were previously
obtained by directly sequencing overlapping RT-PCR amplicons as
described previously (GenBank accession nos. EF407411-EF407504; refs.
17, 43). Mixed-base positions caused by the HCV quasispecies were resolved
by identifying the predominant base at each position. The 3’ end of the
HCV ORF could not be amplified in a few samples, hence the C-terminal 56
amino acids of NS5B were excluded from the analyses so that all sequenc-
es were represented equally. The numbering system for la sequences
was identical to the H77 isolate (GenBank accession no. AF009606), and
numbering for the 1b sequences was the same as the J4 isolate (GenBank
accession no. AF054247).

Calculation of covariance pairs. The sequences were aligned using Clustal W
(44) as previously described (17). For each genotype, 5 different alignments
were created and independently subjected to covariance analysis (Table 2).

Algorithms that calculate covariance require an intermediate level of
conservation. Positions that are invariant do not contain sufficient infor-
mation to assess correlated variations, and positions that display random
differences can generate spurious correlations. Therefore, we evaluated 3
algorithms to identify covarying positions (24, 29, 45). In accord with the
results of Fodor and Aldrich (46), we found that the OMES method (29)
performed well on this data set. The other methods gave spurious correla-
tions as a result of the relatively high degree of conservation in the HCV
sequences or because their clustering methods did not perform well in this
context. We used complete clustering with the OMES method because no
assumptions (e.g., number or size of the clusters) are needed.

To identify the covarying pairs, we calculated for every possible pair of
columnsiand j, a score S using observed and expected pairs:

L

Z (Nobs - Nexp)2
N,

valid (Equation 1)

where Lis the list of all observed pairs and Ny is the number of occurrences
for a pair of residues. The expected number for the pair (N.y) is given by:

cC

Xy

Now Nyasa (Equation 2)
in which N, is the number of sequences in the alignment that are nongap
residues, C,; is the observed number of residues x at position i, and Cyis
the observed number of residues y at position j. The expected number of
column pairs calculated in this manner provides a null model for compari-
sons of the observed pairs.

An OMES score of 0.5 was used as the cutoff for all analyses. This cut-
off was chosen for 4 reasons. First, at this value, the All network formed
a complete graph (all nodes connected by at least 1 edge), but at a cut-
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off value of 0.9, 20% of the nodes had no edges. Therefore, 0.5 was not so
stringent as to exclude possibly informative data. Second, the number of
edges increased dramatically at cutoff values lower than 0.5 (Supplemental
Figure 1). A cutoff value of 0.5 corresponded to 3 of 16 possible differences
in the pair of columns in the day-28 alignments. [This value is calculated
as § = X(Nob — Newp)?/Nyatia; with S of 0.5 and Nyq of 16, then 0.5 x 16 =8 =
2(Nops = Nexp)?; the square root of 8 is 2.8, the maximum difference between
Nopsand N,yp.] Therefore, covariances with scores less than 0.5 are weak, and
using values below 0.5 would greatly increase the number of spurious asso-
ciations. Third, we observed relatively small effects on the response-specific
networks at less than 25% shuffling in the permutation analysis (Figure 4).
A cutoff value of 0.5 corresponded to at least 3 of 16 (18.75%) possible dif-
ferences in the day-28 response-specific alignments, hence this value was
well within the stable range of the network. Finally, the number of edges in
the Marked and Poor responder networks began to show a difference at a
value of 0.5 (Supplemental Figure 1). This was an asset because one of our
goals was to find differences between the response classes.

Network generation. Graphs were generated and rendered for the cova-
rying positions in each response class using Cytoscape (version 2.6.1;
ref. 47). Such complete clustering is usually not performed on large data
sets because it is computationally intensive. However, complete cluster-
ing was easily achievable in this case because the covarying positions were
obviously linked together. Therefore, we did not need to use the covariance
score to generate the clusters. Instead, we simply chose a cutoff value for
the score; this is the equivalent of single-linkage clustering.

Statistics. Race and sex distributions were compared across response
groups using Pearson’s %2 test for association. Normally distributed char-
acteristics were compared across response groups using ANOVA, whereas
the Kruskal-Wallis nonparametric test was used when distributions were
not normally distributed. The fraction of true positives relative to the
unshuffled network was compared using a 2-tailed Student’s ¢ test. Fish-
er’s exact test was used to compare the proportions of hydrophobic pairs
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between response groups. The program to calculate covariance scores and
associated parameters was custom written. Statistical tests were performed
using R (version 2.6.2; ref. 48). In all cases, a P value of 0.05 or less was
considered significant.

Calculation of solvent exposure. Solvent exposure was calculated using the
method of Lee and Richards (49) as described previously (50). The raw
exposed surface area was normalized using the tripeptide as a standard
state (51). The normalized exposure was averaged over all side-chain atoms,
and the residue was considered to be solvent exposed if it had greater than
40% exposed side-chain atoms.

Topology and structural analyses. The transmembrane regions were pre-
dicted using TMHMM (52, 53). These regions were then mapped onto the
positions of signal sequences and combined with the reported location
of proteins (e.g., cytoplasm, endoplasmic reticulum lumen, or transmem-
brane; refs. 54, 55). Inter-residue distances were calculated using the PDB
coordinates (2HDO, 1CU1, 1ZH1, 2GIR, and 2A4Q) using a custom-writ-
ten program and RASMOL version 2.7 (56).
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