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mitochondria and NADPH oxidases also transduce homeostatic information in response to metabolic, mechanical, and
inflammatory cues. In this issue of the JCI, Dugan and colleagues demonstrate that mitochondrial-derived ROS, which is
maintained by a feed-forward AMP kinase activation cascade, is reduced in diabetes and plays an adaptive role in
preserving renal glomerular function during hyperglycemia. This enlightened view of mitochondrial ROS biology forces us
to reconsider therapeutic approaches to metabolic disease complications such as diabetic nephropathy.
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Global, sustained production of ROS has deleterious effects on tissue struc-
ture and function and gives rise to biochemical and physiological changes 
associated with organ senescence. Specific, localized ROS metabolites gen-
erated by mitochondria and NADPH oxidases also transduce homeostatic 
information in response to metabolic, mechanical, and inflammatory cues. 
In this issue of the JCI, Dugan and colleagues demonstrate that mitochondri-
al-derived ROS, which is maintained by a feed-forward AMP kinase activa-
tion cascade, is reduced in diabetes and plays an adaptive role in preserving 
renal glomerular function during hyperglycemia. This enlightened view of 
mitochondrial ROS biology forces us to reconsider therapeutic approaches 
to metabolic disease complications such as diabetic nephropathy.

Diabetes management:  
a complicated issue
With an estimated 366 million individuals 
afflicted worldwide, the importance of dia-
betes’ effects on human health and health-
care cannot be overstated (1). In the United 
States alone, the direct and indirect costs 
are staggering. Every year in the US, 250 
billion dollars, approximately 1.5% of the 
country’s entire gross domestic product, 
is spent on diabetes and its complications 
(2). The intrinsic cellular responses and 
vascular injury that arise from hyperglyce-
mia result in a variety of costly complica-
tions such as neuropathies, retinopathies, 
and cardiovascular disease, which includes 
heart failure, stroke, myocardial infarc-
tion, and arteriosclerosis. Improvements 
in glycemic control alone are insufficient 
to fully mitigate diabetes-associated com-
plications; therefore, clinical differences 

Conflict of interest: The author has declared that no 
conflict of interest exists.

Citation for this article: J Clin Invest. 2013; 
123(11):4573–4576. doi:10.1172/JCI72326.

in the pathobiology of diabetic end organ 
complications should drive the search for 
adjunctive therapeutic approaches above 
and beyond glycemic control. For example, 
intensive control of both glucose and lipid 
intake has emerged as an effective strategy 
for reducing retinopathy (3), but other 
diabetes-associated complications such as 
nephropathy (4) and macrovascular dis-
ease (5) remain refractory to this focused 
metabolic strategy. Moreover, interactions 
between the metabolites produced in asso-
ciation with diabetes and chronic kidney 
disease synergize and have devastating 
effects on cardiovascular health (6). Inno-
vative therapeutic approaches are necessary 
for diabetes treatment, and the pathways 
involved in mitochondrial oxidative stress 
have become attractive targets (7).

Oxidative stress in diabetes
It is widely appreciated that extracellular 
oxidative stress globally increases in both 
type 1 diabetes (T1D) and type 2 diabetes 
(T2D) (8, 9). Current opinion holds that 
diabetes-associated mitochondriopathy 

(7) directly contributes to ROS gener-
ation, as has been observed in isolated 
endothelial cells (10). ROS and oxylipid 
metabolites are critical for the micro-
biocidal activity of phagocytes, wound 
healing, and the pathobiology of several 
inflammatory diseases including ath-
erosclerosis. Since ROS can induce DNA 
damage and both are increased in dia-
betes (11, 12), the accumulation of both 
diabetes-associated mitochondrial and 
genomic DNA alterations are considered 
to be the consequence of abnormal mito-
chondrial ROS production. Multiple cel-
lular enzymes generate ROS signatures in 
distinct subcellular venues (13), primarily 
superoxide (e.g., NOX1, NOX2, mitochon-
drial complexes), with rapid dismutation 
to H2O2 or direct H2O2 elaboration (e.g., 
NOX4, acyl-CoA oxidase, xanthine oxi-
dase). These local intracellular ROS sig-
natures, which are dynamic and elicited in 
response to intracellular and extracellular 
cues, are highly regulated and critical sec-
ond messengers in metabolism and signal 
transduction (14). The interrelationships 
between distinct intracellular ROS metab-
olism and extracellular oxidative stress are 
poorly understood but are of emerging 
importance in the pathogenesis of organ 
dysfunction associated with aging and 
chronic diseases including diabetes (14).

In this issue of the JCI, Dugan and col-
leagues examine the role of mitochon-
drial-derived superoxide in diabetic kid-
ney disease (15). Implementing multiple 
validated and unconventional methods 
of superoxide assessment, they demon-
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nephropathy and pathobiology as well as 
several other diabetes- and aging-related 
complications. A more detailed under-
standing of the mechanisms underly-
ing diabetes-induced mtDNA damage is 
needed, since this antecedent genomic 
alteration likely contributes to impaired 
mitochondrial function (Figure 1). The 
role of mitochondria as sophisticated sig-
naling organelles must be carefully con-
sidered when crafting diabetes-related 
treatment strategies (14, 22). In addition 
to ROS, several non-ROS metabolites that 
are regulated by hyperglycemia, PDH acti-
vation, and mitochondrial carbon flux, 
such as succinate and α-ketoglutarate, are 
ligands for G protein–coupled receptors 
found in the kidney (23, 24). Certainly, 
the indiscriminate “scavenging” of cellular 
ROS as a therapeutic approach to chronic 
disease may not be logical given the impor-
tant role of cellular H2O2 as a second mes-
senger in both adaptive and maladaptive 
responses (14). The concepts and pathways 
identified in ischemic preconditioning, 
which is a process that activates AMPK as 
a component of myocardial protection to 
subsequent hypoperfusion (25, 26), may be 
applicable to early diabetic kidney disease. 
Since mitochondrial ROS signaling cou-
ples NADPH oxidase/NOX activation with 
prosclerotic responses in renal mesangial 
cells, vascular smooth muscle cells, arte-

likely involves enhanced mitochondrial 
biogenesis (via PCG1α) as well as mito-
chondrial turnover/mitophagy (19, 20). 
Albuminuria, which is a clinically relevant 
index of diabetic nephropathy and renal 
podocyte dysfunction (21), developed in 
both STZ and Ins2Akita T1D models and 
was reversed by AICAR administration 
(15). Finally, the authors found that renal 
albumin responses to AICAR were lost in 
mice lacking AMPK, confirming that the 
relief of diabetic complications by AICAR 
is mediated via AMPK activation. Of note, 
AICAR treatment globally reduced renal 
ROS formation while simultaneously 
promoting mitochondrial superoxide 
generation (15). These data indicate that 
renal mitochondrial-derived ROS are not 
the major source of renal oxidative stress 
in diabetes. This leads to a somewhat 
iconoclastic concept: mitochondrial-de-
rived renal ROS, which are stimulated by 
AICAR and amplified by a feed-forward 
AMPK cascade (Figure 1), are protective 
in a hyperglycemic setting, and failure of 
mitochondrial ROS generation contrib-
utes to diabetic kidney disease (15).

Reexamining the role of ROS 
and other diabetes-associated 
metabolites
Why is this study important? It forces us to 
reexamine our understanding of diabetic 

strate that renal mitochondria in two 
models of T1D (streptozotocin-treated 
[STZ-treated] mice and Ins2Akita mice) pro-
duced reduced levels of superoxide even 
though total urinary ROS were increased. 
Diabetes-associated reductions in mito-
chondrial ROS resulted in the concomi-
tant downregulation of the redox sensor 
AMPK along with reduced pyruvate dehy-
drogenase (PDH) activity and prolifera-
tor-activated receptor γ coactivator 1 α 
(Pgc1α) expression (Figure 1). Deficien-
cies in PGC1α expression and activity pre-
sumably contribute to diabetes-associated 
reductions in total mitochondrial density 
(16, 17). Even though mitochondrial ROS 
was reduced in diabetes, mitochondrial 
DNA (mtDNA) damage was increased 
and fully uncoupled from mitochon-
drial oxidative stress (15). Importantly, 
mtDNA damage was directly related to 
the diabetic state in both Ins2Akita and STZ-
treated mice and unrelated to possible 
chemical alkylation from STZ treatment 
(Figure 1). Administration of the AMPK 
activator 5-aminoimidazole-4-carboxam-
ide-1-β-D-ribofuranoside (AICAR) (18) 
reversed AMPK inhibition, which restored 
renal mitochondrial numbers, ROS elab-
oration (15), and PGC1α induction, and 
reduced tissue mtDNA fragmentation 
(Figure 1). It is unclear how AMPK acti-
vation reduces mtDNA damage, but it 

Figure 1
A feed-forward cycle of AMPK-activated mitochondrial metabolism and ROS generation by the kidney reduces diabetes-induced albuminuria. (A) 
Diabetes results in decreased renal mitochondrial superoxide production, which is associated with decreased AMPK and PDH activity. Decreases 
in AMPK and PDH activity further reduce mitochondrial ROS production directly and through decreased PGC1α, which promotes decreased 
mitochondrial density, ultimately resulting in impaired renal podocyte function and albuminuria. Decreased AMPK also results in increased 
NADPH oxidase–dependent ROS production. (B) Restoration of renal mitochondrial ROS production by treatment with the AMPK activator AICAR 
reduces albuminuria and total renal oxidative stress. Mitochondrially derived ROS, which is stimulated by AICAR and amplified by a feedforward 
AMPK cascade, is protective in the setting of hyperglycemia. The failure of mitochondrial ROS generation contributes to diabetic kidney disease. 
Furthermore, AMPK activation reduces NADPH oxidase–dependent ROS formation.
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decisions for any AMPK modulator (41). 
All in all, the insights afforded by the ele-
gant study of Dugan and colleagues (15) 
are truly exciting and will no doubt prove 
extremely useful as we craft new therapeu-
tic strategies to mitigate or prevent the 
end-organ complications arising in our 
patients with diabetes (1, 2).
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Introduction
Tregs, which are characterized by the 
expression of the transcription factor 
Foxp3, are instrumental in the induction 
and maintenance of immune tolerance and 
homeostasis (1, 2); however, the molecular 
mechanisms underlying Treg-mediated 
immunoregulatory functions remain elu-
sive. This issue is complex, considering that 
Tregs are capable of executing their immu-
nosuppressive activity against a broad and 
diverse array of antigens and within dif-
ferent microenvironments. For example, 
Tregs can suppress IFN-γ–producing Th1, 
IL-17–producing Th17, and IL-4–pro-
ducing Th2 responses. This leads to the 
question: Do Tregs use universal suppres-
sive mechanisms or do these cells employ 
environmentally orientated programs of 
suppression enacted in response to distinct 
inflammatory cues?

It is generally accepted that Tregs use 
an arsenal of mechanisms to suppress the 
immune response through certain sur-
face molecules (e.g., CTLA4, CD25, CD73, 
CD39) and secretion of immunoregula-
tory cytokines (e.g., TGF-β, IL-10) (3, 4). 
These mechanisms explain many, but not 
all, of the immunosuppressive activities 
of Tregs. Recent evidence suggests that 

Tregs suppress different types of T cell–
mediated immune responses through 
the acquisition of specific T effector cell 
transcriptional programs, depending on 
the context and the location of inflam-
mation (5). For example, Treg-mediated 
specific suppression of Th1 cells requires 
the expression of the transcription factor 
T-box 21 (TBET). Treg-specific deletion of 
Tbet results in uncontrolled type 1 inflam-
mation (6). In a similar vein, Treg-specific 
deletion of the gene encoding STAT3 leads 
to dysregulated Th17 responses (7), imply-
ing a key role for STAT3 in Treg control 
of Th17-mediated inflammation. Intrigu-
ingly, Treg-specific knockout of Irf4, a 
transcription factor involved in both Th2 
and Th17 cell differentiation, causes the 
selective dysregulation of autoreactive Th2 
responses, suggesting that IRF4 is required 
for Treg suppression of Th2 cells (8). In this 
issue of the JCI, Jin et al. (9) reveal an indis-
pensable function of Itch, a HECT (homol-
ogous to E6-associated protein C terminus) 
E3 ubiquitin ligase, in Treg-regulated Th2 
responses in mice. Targeted deletion of Itch 
in Foxp3+ cells resulted in the uncontrolled 
production of IL-4, IL-5, and IL-13 by 
Tregs and, surprisingly, by Itch-sufficient 
CD4+ effector T cells (9).

Without Itch in Tregs, Th2-type 
inflammation is uncontrolled
Itch was originally identified in a mutant 
mouse that displayed skin scratching 

and abnormal immune disorders (10). 
Itch–/– mice exhibit swollen lymph nodes, 
enlarged spleens, and increased Th2-type 
inflammation in the lungs and digestive 
tract (11). The excess Th2 inflammation 
in these mice was attributed to the inabil-
ity of Itch–/– CD4+ T cells to differentiate 
into inducible Tregs (iTregs ) (12, 13) in 
response to TGF-β (14); however, an intrin-
sic role for Itch in thymic-derived Treg cells 
(tTregs or nTregs) remains unknown.

Jin et al. developed a Treg-specific Itch 
knockout mouse by crossing Itchf/f mice 
with Foxp3Cre mice (Itchf/fFoxp3Cre) to inves-
tigate the role of Itch in tTregs. Surpris-
ingly, the Itchf/fFoxp3Cre mice appeared 
normal at birth, but later exhibited lymph-
oproliferative disorder, pulmonary inflam-
mation, skin lesions, decreased weight, 
and a higher mortality rate. Since Itch 
regulates Th2 cytokine production (11), 
the authors challenged Itchf/fFoxp3Cre mice 
with OVA in an experimental model of 
asthma. They found that compared with 
control mice, Itchf/fFoxp3Cre mice had more 
severe lung inflammation with dramatic 
increases in OVA-specific IgE and Th2 
cytokines including IL-4, IL-5, and IL-13 
in the BAL. These results raised the possi-
bility that aberrant Th2 inflammation was 
a systemic event in Itchf/fFoxp3Cre mice.

To address the possibility that Th2 
inflammation is systemically altered in 
Itchf/fFoxp3Cre mice, Jin et al. examined ani-
mals between 6 and 8 weeks of age, when 
signs of inflammation first appeared. 
There were no changes in the thymus, but 
the number of splenic CD4+ and CD8+ T 
cells was increased along with activated  
T cells in Itchf/fFoxp3Cre mice compared 
with age-matched WT mice. Importantly, 
ex vivo analysis revealed that CD4+ T cells 


